纳米管结构的形变可导致其电导率发生变化
二维锡烯拓扑材料研究取得进展
突破!物理学家发现控制“纳米级磁铁”的新技术!
科学家发现:拉伸纳米管可控制其电导率,未来可应用于高精度传感器
具有环面拓扑结构的光学晶格
中国科学家在国际上首次实现器件无关的量子随机数
科学新发现:光物质相互作用可改善电子和光电器件
前沿 | 基于变换光学原理的新型集成光子器件
洞见 | 量子计算机控制系统问世 “量子霸权”仍任重道远
突破 | 化学所在钙钛矿太阳能电池材料与器件方面取得系列进展
官方微信
友情链接

西安光机所芯片集成微腔光学频率梳研究获进展

2019-01-04

近日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室微纳光学与光子集成课题组在中国科学院战略性先导科技专项(B类)“大规模光子集成芯片”和国家自然科学基金项目的支持下,芯片集成微腔光学频率梳研究取得进展,特邀论文Raman self-frequency shift of soliton crystal in a high index doped silica micro-ring resonator 发表在Optical Materials Express上,并获美国光学学会(OSA)“光学聚焦”(Spotlight on Optics)亮点推荐。

基于芯片集成微谐振腔(microresonators)的光学频率梳由于其小型化、超高重复频率等特点,有望在精密光谱测量、绝对测距、天文观测、小型化光钟、超高速光通信等领域获得重要应用。美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)的Daniel C. Cole撰文评论称“揭示光学微型谐振腔中复杂的非线性动力学过程是推动具备革命性的频率计量与合成能力的光学频率梳技术向芯片化发展的重要步骤,而(西安光机所)论文的结果使得人们更加接近该目标的实现。该论文同时研究了两种不同的非线性效应:由拉曼散射引起的孤子脉冲拉曼自频移和腔内共同传输且自发有序排列的脉冲串——光孤子晶体(soliton crystals)。其重要意义在于:一方面,文章展示了孤子晶体的特征光谱可以用来研究光学材料的拉曼响应,为类似系统中非线性动力学研究提供了新的工具;另一方面,文章中高折射率差掺杂玻璃材料的拉曼响应测量对更深刻理解如何开发基于这种材料平台的微光梳(Micro-comb),判断材料本身潜力与极限,进而推进其实际应用至关重要。总之,论文结果使人们更接近于完全开发非线性光学集成微腔在诸多应用领域的巨大潜力”。

论文链接

Spotlight评价链接

拉曼效应影响下不同微腔孤子晶体光谱图(左:实验结果,中:模拟结果,右:拉曼响应)

 

(责任编辑:叶瑞优)

(来源:中国科学院



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 ? 中国科学院半导体研究所

备案号:京ICP备05085259号 京公网安备110402500052 中国科学院半导体所声明