[黄昆论坛]第373期:Energy Harvesting by Spin Current
[黄昆论坛]第372期:Enhancement of Light Color Conversion through Nanoscal...
[黄昆论坛]第371期: 光力学中的拓扑和非互易动力学
[黄昆论坛]第370期:Recent Advances of 2D Metal-Complex Nanosheets
[黄昆论坛]第369期:High-speed optoelectronics for underwater optical wire...
[黄昆论坛]第368期:The Development of Low Noise Avalanche Photodiodes
[黄昆论坛]第367期:氧化钛纳米棒的制备以及在染料敏化太阳电池中的应用
[黄昆论坛]第366期:Valleytronics and correlated phase probed by interlaye...
[黄昆论坛]第365期:低维纳米材料的极化激元及其增强红外光谱研究
[黄昆论坛]第364期:微纳光子的高效操控与室温量子态
官方微信
友情链接

第254期:Nanoengineering of Bioinspired Multifunctional Surfaces

2015-07-02

  报告题目: Nanoengineering of Bioinspired Multifunctional Surfaces 

  报告人: Prof. Chang-Hwan Choi (Department of Mechanical Engineering at Stevens Institute of Technology,USA) 

  时间: 2015年7月7日 (星期二) 上午: 10:00  

  地点: 中国科学院半导体研究所图书馆101会议室   

  Abstract: Nature such as plants, insects, and marine animals uses three-dimensional (3D) micro/nano-textured surfaces with tailored surface wettability and mechanical pliability in their components (e.g., leaves, wings, eyes, legs, and skins) for multifunctional purposes such as self-cleaning, low-friction, anti-fouling, anti-icing, and anti-reflection, with great energy efficiency. As scientific quests and engineering applications reach down to such a nanometer scale inspired by the nature, there is a strong need to fabricate 3D nanostructures with good regularity and controllability of their pattern, size, and shape. In many applications, furthermore, the nanostructures are not useful unless they cover a relatively large area and the manufacturing cost is within an acceptable range. The first part of this presentation will introduce effective 3D nano-patterning and fabrication techniques to create well-regulated nanostructures over a relatively large substrate area of various types of substrate materials including ceramics, metals, and polymers. Such large-area 3D nanostructures with tailored structural dimensions and geometries can open new application possibilities in many areas. The rest of the talk will present a few examples of the applications using the 3D nanostructures, such as hydrodynamic friction reduction, anti-biofouling, anti-icing, anti-corrosion, and anti-reflection.

  Biography: Dr. Chang-Hwan Choi is currently working as an Associate Professor in the Department of Mechanical Engineering at the Stevens Institute of Technology. He acquired his BS (1995) and MS (1997) in Mechanical & Aerospace Engineering from Seoul National University in Korea. He also earned his MS in Fluids, Thermal, and Chemical Processes from Brown University in 2002. Dr. Choi received his PhD in Mechanical Engineering from the University of California at Los Angeles (UCLA) in 2006, specializing in MEMS/Nanotechnology and minoring in Fluid Mechanics and Biomedical Engineering. He has two-year (1996, 2000) work experience at Korea Aerospace Research Institute and three-year (1997-1999) teaching experience at Chandrakasem Rajabhat University in Thailand. His current research activities include large-area nanopatterning and 3D nanofabrication, fluid physics and heat transfer at nanoscale interfaces, microfluidic self-assembly of nanomaterials, nanofluidic energy harvesting, and cell-material interactions, funded by various federal agencies in US (NSF, DARPA, ONR, ARMY, and DOE) and industries. He has recently been named as a recipient of the 2010 Young Investigator Program (YIP) award by the US Office of Naval Research (ONR) for his efforts in the development of 3D nanostructures for hydrodynamically-efficient anti-corrosion surfaces and highlighted in Nature (http://www.nature.com/naturejobs/2010/100520/pdf/nj7296-385a.pdf).  



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明