High-efficiency and high-speed germanium photodetector enabled by multire...
Growth of high quality InSb thin films on GaAs substrates by molecular be...
A Low-Cost High-Speed Object Tracking VLSI System Based on Unified Textur...
The influence of temperature and TMGa flow rate on the quality of p-GaN
Modify Cd3As2 nanowires with sulfur to fabricate self-powered NIR photode...
Deformation Reduction in Laser Cladding of Sheet Metals by Heat Recycling
A review of research on co-training
Phonon renormalization in reconstructed MoS2 moire superlattices
Axiotaxy driven growth of belt-shaped InAs nanowires in molecular beam ep...
Improving the homogeneity and quality of InGaN/GaN quantum well exhibitin...
官方微信
友情链接

Bright Field Structural Colors in Silicon-on-Insulator Nanostructures

2021-04-01

 

Author(s): Li, LJ (Li, Longjie); Niu, JB (Niu, Jiebin); Shang, X (Shang, Xiao); Chen, SQ (Chen, Shengqiong); Lu, C (Lu, Cheng); Zhang, YL (Zhang, Yongliang); Shi, LN (Shi, Lina)

Source: ACS APPLIED MATERIALS & INTERFACES Volume: 13 Issue: 3 Pages: 4364-4373 DOI: 10.1021/acsami.0c19126 Published: JAN 27 2021

Abstract: Structural coloration with artificially nanostructured materials is emerging as a prospective alternative to traditional pigments for the high resolution, sustainable recycling, and long-time durability. However, achieving bright field structural colors with dielectric nanostructures remains a great challenge due to the weak scattering in an asymmetric environment. Here, we demonstrate all-dielectric bright field structural colors with diffraction-limited resolution on the silicon-on-insulator platform. The backscattering is strongly enhanced from the constructive interference between Mie resonances of individual Si antennas and Fabry-Perot resonances supported by the SiO2 layer. The fabricated colors with varying hues and saturations show strong insensitivity with respect to the interparticle spacing and, remarkably, the viewing angle under resonant conditions. Compared with creating a quasi-homogeneous environment, our strategy is solid and complementary metal-oxide semiconductor integrable, paving the way for practical applications of structural colors in nanoscale color printing, microdisplays, and imaging.

Accession Number: WOS:000614062400084

PubMed ID: 33390005

ISSN: 1944-8244

eISSN: 1944-8252

Full Text: https://pubs.acs.org/doi/10.1021/acsami.0c19126



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:,京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明