A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Defects Induced Charge Trapping/Detrapping and Hysteresis Phenomenon in MoS2 Field-Effect Transistors: Mechanism Revealed by Anharmonic Marcus Charge Transfer Theory

2022-01-17

 

Author(s): Ma, XL (Ma, Xiaolei); Liu, YY (Liu, Yue-Yang); Zeng, L (Zeng, Lang); Chen, JZ (Chen, Jiezhi); Wang, RS (Wang, Runsheng); Wang, LW (Wang, Lin-Wang); Wu, YQ (Wu, Yanqing); Jiang, XW (Jiang, Xiangwei)

Source: ACS APPLIED MATERIALS & INTERFACES DOI: 10.1021/acsami.1c16884 Early Access Date: DEC 2021

Abstract: One critical problem inhibiting the application of MoS2 field-effect transistors (FETs) is the hysteresis in their transfer characteristics, which is typically associated with charge trapping (CT) and charge detrapping (CDT) induced by atomic defects at the MoS2-dielectric interface. Here, we propose a novel atomistic framework to simulate electronic processes across the MoS2-SiO2 interface, demonstrating the distinct CT/CDT behavior of different types of atomic defects and further revealing the defect type(s) that most likely cause hysteresis. An anharmonic approximation of the classical Marcus theory is developed and combined with state-of-the-art density functional theory to calculate the gate bias dependent CT/CDT rates. All the key electr onic quantities are calculated with Heyd-Scuseria-Ernzerhof hybrid functionals. The results show that single Si-dangling bond defects are active electron trapping centers. Single O-dangling bond defects are active hole trapping centers, which are more likely to be responsible for the hysteresis phenomenon due to their significant CT rate and apparent threshold voltage shift. In contrast, double Si-dangling bond defects are not active trap centers. These findings provide fundamental physical insights for understanding the hysteresis behavior of MoS2 FETs and provide vital support for understanding and solving the reliability of nanoscale devices.

Accession Number: WOS:000735943500001

PubMed ID: 34931795

Author Identifiers:

Author Web of Science ResearcherID ORCID Number

Wang, Lin-Wang 0000-0001-7061-2692

Ma, Xiaolei 0000-0001-9303-0521

ISSN: 1944-8244

eISSN: 1944-8252

Full Text: https://pubs.acs.org/doi/10.1021/acsami.1c16884



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明